

Ilia Kuk

PH.D. CANDIDATE, APPLIED MATHEMATICS · GRADUATE RESEARCHER

Program in Applied Mathematics, Department of Mathematics, The University of Arizona, 617 N Santa Rita Ave,
Tucson, AZ 85721

New Frontiers of Sound Science & Technology Center, The University of Arizona, 750 N Cherry Ave, Tucson, AZ 85719

✉️ ilyakuk@arizona.edu | 🏷️ iliakuk.com | 📡 CosmosRedshift7 | 📞 0009-0006-7242-7291 | 🎓 I. Kuk

“Inverse scattering for forward progress.”

Education

The University of Arizona

Tucson, AZ, USA

PH.D. APPLIED MATHEMATICS, ADVANCED TO CANDIDACY (EXPECTED MAY 2027)

Aug. 2022 – Present

- Awarded a Grogan Scholarship

The University of Arizona

Tucson, AZ, USA

M.S. APPLIED MATHEMATICS

Aug. 2022 – May 2024

Skoltech (Skolkovo Institute of Science and Technology)

Moscow, Russia

PH.D. PHYSICS (PROGRAM STARTED), TRANSFERRED TO THE UNIVERSITY OF ARIZONA

Sep. 2020 – Jul. 2022

- Awarded an increased scholarship after Year 1 in recognition of publication merit

Ufa State Aviation Technical University (now Ufa University of Science and Technology)

Ufa, Russia

SPECIALIST DIPLOMA (INTEGRATED B.S./M.S.), INFOCOMMUNICATION TECHNOLOGIES AND SPECIAL COMMUNICATION SYSTEMS

Sep. 2015 – Jun. 2020

- Graduated with honors (“Red Diploma”)
- Awarded Presidential Scholarship of the Russian Federation (2019–2020)
- Awarded merit-based increased scholarship (2017–2020, each year) for scientific achievements (publications, conferences, and patents)

Skills

Programming Python, C/C++

OS Linux, Windows

Tools Git, Docker, MATLAB, Mathematica, L^AT_EX

Machine Learning PyTorch, Deep Learning, Fourier Neural Operator, CNN, GAN, NLP

Scientific Computing NumPy, SciPy, Numba

HPC & Parallel MPI, OpenMP, CUDA kernels, Slurm

Data & Visualization Matplotlib, Plotly, TikZ/Quantikz, Adobe Illustrator

Languages Russian, English

Research

University of Arizona

Tucson, AZ, USA

INVERSE SCATTERING AND OPTICAL COMMUNICATIONS

Aug. 2022 – Present

- Developed an affine-map formulation of the inverse scattering transform (IST) for the NLSE; derived a low-rank approximation of the map ([arXiv:2507.20470](https://arxiv.org/abs/2507.20470)).

New Frontiers of Sound Science & Technology Center (University of Arizona)

Tucson, AZ, USA

QUANTUM-INSPIRED (TOPOLOGICAL ACOUSTIC) COMPUTING

Sep. 2023 – Present

- Designed and experimentally validated acoustic analogs of Hadamard, CNOT, and T gates on a nonlinear metastructure; introduced a unified representation enabling multiple logical operations via distinct physical actions ([JASA, 2025](https://jasa.aps.org/abstract/JASA/2025/128/1/011001)).
- Realized the period-finding core of Shor’s algorithm using phase-bit (*phibit*) logic on a topological acoustics platform; manuscript in submission; invention disclosure planned.

Biosphere 2 (University of Arizona)

Oracle & Tucson, AZ, USA

BIOSPHERE 2 CLIMATE CONTROL VIA NEURAL OPERATORS AND DIGITAL TWIN

2023 – 2024

- Performed system identification for a non-isothermal rainforest biome; built neural-operator forecasting models for control.
- Prototyped model predictive control strategies and end-to-end data pipelines for facility operations.

Skoltech

Moscow, Russia

INVERSE SCATTERING AND OPTICAL COMMUNICATIONS

2020 – 2022

- Analyzed pulse interactions in weakly nonlinear coherent optical communications ([J. Phys.: Conf. Ser., 2021](#)).
- Built a GPU-accelerated NLSE solver in CUDA ([code](#)).
- Explored ML-integrability hybrid methods for nonlinear fiber systems.

Ufa State Aviation Technical University

Ufa, Russia

ORBITAL ANGULAR MOMENTUM (OAM) WIRELESS AND RADIO-OVER-FIBER

2018 – 2020

- Designed ultra-wideband vortex antenna arrays for high-capacity wireless links; studied topology-mode purity trade-offs ([J. Phys.: Conf. Ser., 2019](#); [IEEE TELFOR, 2019](#)).
- Developed theory for optics-to-THz OAM conversion via difference-frequency generation, including a law for topological-charge transfer; validated with numerical simulations ([Computer Optics, 2019](#)).

Ufa State Aviation Technical University

Ufa, Russia

ELECTRICAL ENGINEERING AND INSTRUMENTATION (PATENTED DEVICES)

2018 – 2019

- Designed a time-pulse integrating voltage converter combining an integrator, a double-threshold regenerative comparator, and a 4-channel analog switch; a pair of configurable followers in the comparator feedback toggles inverting/non-inverting modes to integrate a selected input and convert amplitude to pulse frequency or pulse duration ([RU2689805C1, 2019](#)).
- Designed a radio ball primary converter for liquid flow using a hollow dielectric ball with an internal LC resonator magnetically coupled to an external oscillator in an annular channel; provides frequency or pulse (voltage/current) output largely independent of liquid type and physicochemical properties ([RU2685798C1, 2019](#)).

Skoltech Summer School

Moscow, Russia

RESEARCH WORKSHOP IN THEORETICAL PHYSICS. MICROSCALE CHIRAL PROPULSION

Summer 2017

- Selected as a winner in an international student physics competition; invited to the workshop organized by L. Levitov (MIT) and colleagues.
- Developed a Green's-function approach for Stokes-flow propulsion of chiral bodies; recovered Stokes' drag law; analyzed helical propellers; proposed optofluidic chiral sorting ([arXiv:1804.08664](#); advisor: Prof. D. Kharzeev, Stony Brook).

Teaching

MATH 485/585 — Mathematical Modeling

University of Arizona

PROJECT MENTOR

Spring 2025

- Mentored two student groups (2–3 students each) on semester-long modeling projects based at Biosphere 2.
- Guided project scoping, model formulation, data analysis, and validation; held weekly check-ins and office hours.
- Provided feedback on proposals, final reports, and presentations; reviewed code and reproducibility.
- Coordinated with Biosphere 2 to align objectives and data needs.

MATH 581 A/B — Methods of Applied Mathematics

University of Arizona

RECITATION COORDINATOR (PHD COURSE)

Fall 2023 – Spring 2024

- Designed and led graduate recitations; held weekly office hours; authored select exam problems and prepared solution keys.

MATH 112 — College Algebra Concepts and Applications

University of Arizona

TEACHING ASSISTANT

Fall 2023

- Assessed student work; held weekly office hours; graded homework.

MATH 107 — Exploring and Understanding Data

University of Arizona

TEACHING ASSISTANT

Spring 2023

- Assessed student work; held weekly office hours; graded homework.

Mathematical Analysis I

USATU

PEER TUTOR

Fall 2016

- Assisted first-year students with homework problem sets and core course materials during weekly help sessions.

Publications

FULL LIST

[Google Scholar \(I. Kuk\)](#)

SELECTED

- [1] **Kuk, I.**, Djordjevic, I. B., Gabitov, I. R., Runge, K., Ige, A. S., Deymier, P. A., Quantum logic gate analogies in nonlinear acoustics, *The Journal of the Acoustical Society of America*, vol. 157, no. 6, pp. 4437–4448, 2025. [doi: 10.1121/10.0036901](https://doi.org/10.1121/10.0036901).
- [2] **Kuk, I.**, Gabitov, I. R., Inverse scattering transform via affine map: Applications to high-speed nonlinear optical communications, 2025. [arXiv: 2507.20470](https://arxiv.org/abs/2507.20470).
- [3] Gibney, J., **Kuk, I.**, Gabitov, I., Pulse interactions in weakly nonlinear coherent optical communication links, in *Journal of Physics: Conference Series*, IOP Publishing, vol. 1890, 2021, p. 012 006. [doi: 10.1088/1742-6596/1890/1/012006](https://doi.org/10.1088/1742-6596/1890/1/012006).
- [4] Gizatulin, A. R., Meshkov, I. K., Grakhova, E. P., Ishmiyarov, A. A., **Kuk, I. A.**, Sultanov, A. K., Bagmanov, V. K., Abdakhmanova, G. I., Vinogradova, I. L., Bourdine, A. V., Design of vortex optical fibers for rof systems: Part i: Overview and alternative solutions, *Optical Technologies for Telecommunications 2019*, vol. 11516, pp. 514–521, 2020. [doi: 10.1117/12.2566512](https://doi.org/10.1117/12.2566512).
- [5] Bagmanov, V. K., Sultanov, A. K., Gizatulin, A. R., Meshkov, I. K., **Kuk, I. A.**, Grakhova, E. P., Abdakhmanova, G. I., Vinogradova, I. L., Optics-to-thz conversion of vortex beams using nonlinear difference frequency generation, *Computer Optics*, vol. 43, no. 6, pp. 983–991, 2019. [doi: 10.18287/2412-6179-2019-43-6-983-991](https://doi.org/10.18287/2412-6179-2019-43-6-983-991).
- [6] Bagmanov, V. K., Sultanov, A. K., Gizatulin, A. R., Meshkov, I. K., **Kuk, I. A.**, Grakhova, E. P., Abdakhmanova, G. I., Vinogradova, I. L., The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency, in *2019 27th Telecommunications Forum (TELFOR)*, IEEE, 2019, pp. 1–4. [doi: 10.1109/TELFOR48224.2019.8971332](https://doi.org/10.1109/TELFOR48224.2019.8971332).
- [7] Grakhova, E., Meshkov, I., Abdakhmanova, G., Bagmanov, V. K., Vinogradova, I., Gizatulin, A., **Kuk, I.**, Sultanov, A. K., An approach for generating and detecting the signals with the given orbital angular momentum for wireless communication systems, in *Journal of Physics: Conference Series*, IOP Publishing, vol. 1368, 2019, p. 042 038. [doi: 10.1088/1742-6596/1368/4/042038](https://doi.org/10.1088/1742-6596/1368/4/042038).
- [8] Abdakhmanova, G., Grakhova, E., Bagmanov, V. K., Gizatulin, A., **Kuk, I.**, Meshkov, I., Ishmiyarov, A., Ultra-wideband vortex antenna array design for high capacity radio links, in *Journal of Physics: Conference Series*, IOP Publishing, vol. 1096, 2018, p. 012 164. [doi: 10.1088/1742-6596/1096/1/012164](https://doi.org/10.1088/1742-6596/1096/1/012164).
- [9] Aif, S., **Kuk, I. A.**, Kharzeev, D. E., Chiral propulsion by electromagnetic fields, 2018. [arXiv: 1804.08664](https://arxiv.org/abs/1804.08664).

Patents

- [1] **Kuk, I. A.**, Safinov, S. S., [Time-pulse universal integrating voltage converter](#), Patent RU2689805C1, Application No. RU2018128886A, May 29, 2019.
- [2] Safinov, S. S., **Kuk, I. A.**, Umetbaev, F. S., Bikbulatov, T. R., [Radio ball primary converter of liquid flow](#), Patent RU2685798C1, Application No. RU2018119616A, Apr. 23, 2019.

Honors & Awards

INTERNATIONAL AWARDS

2025	Winner of the Grogan Scholarship , Thomas M. and Candace C. Grogan Endowed Fund, Department of Mathematics, University of Arizona	<i>Tucson, AZ, USA</i>
2018	3rd Degree Diploma (Final Round) , Open International Internet Olympiad – Physics (Technics & Technology)	<i>Online</i>
2017	Winner , International Student Physics Competition for Skoltech Summer School in Theoretical Physics	<i>Online</i>
2017	3rd Place , International Student Olympiad in Theoretical & General Electrical Engineering (M.O. Dolivo-Dobrovolsky)	<i>Ivanovo, Russia</i>

NATIONAL AWARDS (RUSSIA)

2020	Winner's Diploma – Radio Engineering (Specialist/Master) , All-Russian Olympiad “I am a Professional” (Season 3)	<i>Russia</i>
2020	Presidential Scholarship of the Russian Federation , Priority Areas of Modernization & Tech Development (2019/2020)	<i>Russia</i>
2019	Prizewinner's Diploma – Radio Engineering (Specialist/Master) , All-Russian Olympiad “I am a Professional” (Season 2)	<i>Russia</i>
2019	Prizewinner's Diploma – Physics (Specialist/Master) , All-Russian Olympiad “I am a Professional” (Season 2)	<i>Russia</i>

Workshops & Outreach

2025	Speaker , The Community College STEM Workshop Series (students represented 17 community colleges across the U.S.), New Frontiers of Sound Science & Technology Center, University of Arizona	<i>Tucson, AZ, USA</i>
2019	Participant , Ural Federal University Winter School “Software Engineering & Radio Engineering”	<i>Sochi, Russia</i>
2019	Participant , 5th Interregional School-Conference “Nonlinear Processes in Condensed Matter”	<i>Ufa, Russia</i>
2017	Participant , Skoltech Summer School in Theoretical Physics	<i>Moscow, Russia</i>

Talks

Digital Twins at Biosphere 2 Workshop	<i>University of Arizona</i>
DIGITAL TWINNING FOR CYBERNETIC CONTROL: BIDIRECTIONAL DATA FEEDBACKS FOR BIOSPHERE BIOME CONTROL	Dec. 2025
Los Alamos – Arizona Days Conference	<i>Los Alamos, NM</i>
INVERSE SCATTERING TRANSFORM VIA AFFINE MAP OPERATOR AND MACHINE LEARNING	Nov. 2025
Mathematical Physics and Probability Seminar	<i>University of Arizona</i>
PERTURBATION THEORY, INTEGRABILITY, AND DATA-DRIVEN MODELING FOR FIBER OPTICS	Oct. 2025
Applied Math Graduate Student Brown Bag Seminar	<i>University of Arizona</i>
SHOR’S ALGORITHM ON A NONLINEAR ACOUSTIC METASTRUCTURE	Sept. 2025
The Community College STEM Workshop Series (17 community colleges across the U.S.), New Frontiers of Sound Science & Technology Center	<i>University of Arizona</i>
FEEL THE FREQUENCY: THE POWER OF VIBRATIONS	Apr. 2025
Seminar of Roald Sagdeev	<i>Online, University of Maryland</i>
HOW TO MITIGATE NONLINEAR DISTORTIONS IN OPTICAL COMMUNICATION SYSTEMS	Mar. 2025
Stakeholder Meeting, New Frontiers of Sound Science & Technology Center	<i>University of Arizona</i>
QUANTUM LOGIC GATE ANALOGIES IN NONLINEAR ACOUSTICS, STUDENT LIGHTNING TALK	Jan. 2025
Analysis, Dynamics and Applications Seminar	<i>University of Arizona</i>
INTEGRABILITY AND INVERSE SCATTERING IN THE NONLINEAR SCHRÖDINGER EQUATION	Mar. 2024
Applied Math Graduate Student Brown Bag Seminar	<i>University of Arizona</i>
BIOSPHERE 2 THERMAL CONTROL PROJECT POWERED BY MACHINE LEARNING, SUMMER 2023 RESEARCH SHOWCASE PRESENTATIONS	Aug. 2023